

ME435 Poly-phase Handhold Power Meter

Connectivity advantages		
Model	ME435	
Support Extra sensor	BNC terminal 333mV CT	
	BNC terminal Rogowski coil	
Storago	1GB SD card(Max 6GB)	
Storage	(save intervals 1mins default)	
Power	4*AA battery(wroking time: approx 7 hours)	
	Or 9V DC power supply(included adaptor)	

Feature

Specification			
Model	ME435		
Product component type	Handhold poly-phase power meter		
Poles description	3PH4W 3PH3W 1PH2W (L-N); 1PH2W(L-L);1PH3W(L-L-N)		
Device application	Power analysis Energy meter		
Input type	External Rogowski coil External CT(333mV only)		
Display	3.5 inch TFT screen display		
Sampling rate	8k samples per second		
Harmonic	52th Max		
Mechanical characteristics			
Weight	350g		
Dimension	L*W*D:21.5*10*3.5CM		

Power Meter Characteristics

The power meter measures currents and voltages and reports real-time RMS values for all 3-phases and neutral. In

addition, the power meter calculates power factor, realpower, reactive power, and more.

The following sections list the metering characteristics of the power meter.

Real-Time Measuring

The following table lists the metering characteristics of the power meter for the real-time measurement:

Characteristics	Description	
Current	Per phase, neutral, and average of 3 phases	
Voltage	L-L, L-N, and average of 3 phases	
Frequency	4565 Hz	
Active power	Total and per phase (signed)	
Reactive power	Total and per phase (signed)	
Apparent power	Total and per phase(signed)	
Dower factor (True)	Total and per phase	
Power factor (True)	0.000 to 1 (signed)	
Current unbalance	Per phase, most unbalanced of 3 phases	
Voltage unbalance	most unbalanced of 3 phases	

Minimum/Maximum Values

When any one-second real-time reading reaches its highest or lowest value, the power meter saves the minimum and maximum values in its nonvolatile memory.

From the power meter display, you can:

• view all min./max. values since the last reset and the reset date and time.

• reset min./max. values.

All running min./max. values are arithmetic minimum and maximum values. For example, the minimum phase A-N

voltage is the lowest value in the range from 0 to 999.9GV that has occurred since last reset of the min./max. values. The power meter provides time stamping for all minimum/maximum values.

The following table lists the minimum and maximum values stored in the power meter:

Characteristics	Description
Current	Per phase and average
Voltage	per phase and average
Active power	Per phase and total
Reactive power	Per phase and total
Apparent power	Per phase and total

Demand Readings

The power meter provides the following demand readings.

Characteristics	Description
Current	Per phase and average
Active, reactive, apparent power	Per phase and Total
Peak Demand Values	
Current	Per phase and average
Active, reactive, apparent power	Per phase and Total

Demand Calculation Methods

Power demand is the energy accumulated during a specified period divided by the length of the period. Current demand is calculated using arithmetical integration of the current RMS values during a time period, divided by the length of the period. How the power meter performs this calculation depends on the selected method. To be compatible with electric utility billing practices, the power meter provides block interval power/current demand calculations.

For block interval demand calculations, you select a block of time (interval) that the power meter uses for the demand calculation and the mode the meter uses to handle he interval. 2 different modes are possible:

- Fixed block Select an interval from 1 to 60 minutes (in 1 minute increments). The
- power meter calculates and updates the demand at the end of each interval.

• Sliding block - Select an interval from 1 to 60 minutes (in 1 minute increments). For demand intervals less than 15 minutes, the value is updated every 15 seconds. For demand intervals of 15 minutes and greater, the demand value is updated every 60 seconds. The power meter displays the demand value for the last completed interval.

The following figures illustrate the 2 ways to calculate demand power using the block

method. For illustration purposes, the interval is set to 15 minutes.

Peak Demand

In nonvolatile memory, the power meter maintains a maximum operating demand value called peak demand. The peak is the highest value (absolute value) for each of these readings since the last reset.

You can reset peak demand values from the power meter display. You should reset peak demand after changes to basic power meter setup such as power system configuration.

Energy Readings

The power meter calculates and stores Per phase and total energy values for active, reactive, and apparent energy. You can view energy values from the display. The resolution of the energy value automatically changes from kWh to MWh to GWh (kVAh to MVARh to GWh).

The energy values automatically resets to 0 when it reaches the limit of 999.9GWh,

999.9GVAh, or 999.9GVARh.

The following table	lists the energy	readings from	the power meter:
---------------------	------------------	---------------	------------------

Characteristics	Description
Energy values	
Active energy	0 to 999.9GWh
Active energy	Auto reset to 0 in case of over limit
	0 to 999.9GVARh
Reactive energy	Auto reset to 0 in case of over limit
Apparent operation	0 to 999.9GVAh
Apparent energy	Auto reset to 0 in case of over limit

Power Quality Analysis Values

The power quality analysis values use the following abbreviations:

- Fundamental phase current rms: I1
- Fundamental phase voltage rms: V1
- RMS of up to three harmonics of phase current:

lx, ly, lz, x, y, z = 2, 3,..., N

- RMS of up to three harmonics of phase voltage:
- Vx, Vy, Vz, x, y, z = 2, 3,..., N
- •Total harmonic distortion of the phase current

$$\left(THD\right)_{I} = \frac{\sqrt{I^2 - I_1^2}}{I_1}$$

Total harmonic distortion of the phase voltage

$$(THD)_{V} = \frac{\sqrt{V^2 - V_1^2}}{V_1}$$

 Harmonic distortion of up to three harmonics on the phase current

$$HD_{I_x} = \frac{I_x}{I_1}, x = 2, 3, ..., N$$
$$HD_{I_y} = \frac{I_y}{I_1}, y = 2, 3, ..., N$$
$$HD_{I_z} = \frac{I_z}{I_1}, z = 2, 3, ..., N$$

Harmonic distortion of up to three harmonics on the phase voltage:

$$HD_{V_x} = \frac{V_x}{V_1}, x = 2, 3, ..., N$$
$$HD_{V_y} = \frac{V_y}{V_1}, y = 2, 3, ..., N$$
$$HD_{V_z} = \frac{V_z}{V_1}, z = 2, 3, ..., N$$

THD provides a measure of the total distortion present in a waveform. THD is the ratio of harmonic content to the fundamental and provides a general indication of the quality of a waveform. THD is calculated for both voltage and current.

The following table lists the power quality values of the power meter:

Characteristics	Description
THD	Per phase current Per phase voltage

Data Record

The power meter records data to SD card, the following table lists data record of the power meter.

Record			
Record interval	1s to 9999s (default 1min)		
Record format	CSV		
	Micro SD card 1GB (default)		
Record capacity	Store about 1K Bytes data each time		
	record 2 years (1min & 1GB)		
	Date&time,		
	Voltage(V),UTHD(%),Current(A),ITHD (%),		
	ITHD2(%),ITHD3(%), ITHD4(%), ITHD5(%), ITHD6(%), ITHD2(A),		
Record data	ITHD3(A), ITHD4(A), ITHD5(A), ITHD6(A)		
	Frequency(Hz), PF(power factor),		
	Active Power(W),Reactive Power(Var),Apparent Power(Va),		
Active Energy(Wh),Reactive Energy(Varh),Apparent Energy			

Other Characteristics

The following table lists other characteristics of the power meter:

Characteristics	Description
Reset	
Minimum and maximum values	—
Peak demand values	—
Current demand calculation method	1 to 60 minutes
Power demand calculation method	1 to 60 minut

SHANGHAI PINYAN M&C TECHNOLOGY CO.,LTD

Environmental conditions	
Operating temperature	-25℃ to +55℃
Storage temperature	-40°℃ to +85℃
Humidity rating	5 to 95% RH at 50 °C (non-condensing)
Pullution degree	2
Overvoltage category	III, for distribution systems up to 277/480VAC
Dielectric withstand	As per IEC61010-1, Doubled insulated front panel display
Altitude	3000m Max
IP degree of protection	IP20 conforming to IEC 60629
Colour	White
Contractual warranty	12months
EMC	
EMC Electrostatic discharge	Level IV(IEC61000-4-2)
EMC Electrostatic discharge Immunity to radiated fields	Level IV(IEC61000-4-2) Level III (IEC61000-4-3)
EMC Electrostatic discharge Immunity to radiated fields Immunity to fast transients	Level IV(IEC61000-4-2) Level III (IEC61000-4-3) Level IV (IEC61000-4-4)
EMC Electrostatic discharge Immunity to radiated fields Immunity to fast transients Immunity to surge	Level IV(IEC61000-4-2) Level III (IEC61000-4-3) Level IV (IEC61000-4-4) Level IV (IEC61000-4-5)
EMC Electrostatic discharge Immunity to radiated fields Immunity to fast transients Immunity to surge Conducted immunity	Level IV(IEC61000-4-2) Level III (IEC61000-4-3) Level IV (IEC61000-4-4) Level IV (IEC61000-4-5) Level III (IEC61000-4-6)
EMC Electrostatic discharge Immunity to radiated fields Immunity to fast transients Immunity to surge Conducted immunity Immunity to power frequency magnetic fields	Level IV(IEC61000-4-2) Level III (IEC61000-4-3) Level IV (IEC61000-4-4) Level IV (IEC61000-4-5) Level III (IEC61000-4-6) 0.5mT (IEC61000-4-8)
EMC Electrostatic discharge Immunity to radiated fields Immunity to fast transients Immunity to surge Conducted immunity Immunity to power frequency magnetic fields Conducted and radiated emissions	Level IV(IEC61000-4-2) Level III (IEC61000-4-3) Level IV (IEC61000-4-4) Level IV (IEC61000-4-5) Level III (IEC61000-4-6) 0.5mT (IEC61000-4-8) Class B (EN55022)
EMC Electrostatic discharge Immunity to radiated fields Immunity to fast transients Immunity to surge Conducted immunity Immunity to power frequency magnetic fields Conducted and radiated emissions Standard compliance	Level IV(IEC61000-4-2) Level III (IEC61000-4-3) Level IV (IEC61000-4-4) Level IV (IEC61000-4-5) Level III (IEC61000-4-6) 0.5mT (IEC61000-4-8) Class B (EN55022)
EMC Electrostatic discharge Immunity to radiated fields Immunity to fast transients Immunity to surge Conducted immunity Immunity to power frequency magnetic fields Conducted and radiated emissions Standard compliance EN 62052-11,EN61557-12,EN 62053-21,EN 6	Level IV(IEC61000-4-2) Level III (IEC61000-4-3) Level IV (IEC61000-4-4) Level IV (IEC61000-4-5) Level III (IEC61000-4-6) 0.5mT (IEC61000-4-8) Class B (EN55022) 2053-22,EN 62053-23,EN 50470-1,EN 50470-3,

Specification

Measurement accuracy			
	100A(0.5% from 10A to 120A)		
	600A(0.5% from 10A to 720A)		
Rated current (5 level selectable)	1000A(0.5% from 10A	to 1200A)	
	3000A(0.5% from 30A	to 3600A)	
	6000A(0.5% from 60A	to 7200A)	
	100A	MRC-16	
	600A	MRC-36	
Rogwoski coil connect setting	1000A	Y-FCT-200 or Y-FCT-350 or NRC-100	
	3000A	NRC-150 or Y-FCT-510	
	6000A	NRC-200 or Y-FCT-800	
	Primary setting:	from 1A to 999999A	
C is connect setting	Secondary setting:	from 0.001mV to 333mV	
Voltage	0.2% from 100V to 50	0V	
Power factor	±0.005		
Active/Apparent Power	IEC62053-22 Class 0.	5	
Reactive power	IEC62053-21 Class 2		
Frequency	0.01% from 45 to 65Hz		
Active energy	IEC62053-22 Class 0.5s		
Reactive energy	IEC62053-21 Class 2		
Input-current characteristics			
Primary current range	Adjustable from 0.1A to 9999A		
Measurement input range	1/2 ²⁵ mV-333mV		
Permissible overload	600mV for 10s/hours		
Power Supply			
Power	4*AA battery(working time: approx. 7hours)		
Power	5V-9V DC power supply(included adaptor)		
power consumption			
Screen Backlight On	1100mW		
Screen Backlight Off	900mW		
Wire diameter for terminals			
Current input	BNC connector		
Voltage input	Banana plug		
DC power supply	DC 5.5*2.1 plug		

Port definition

Port number	Port name	Port function	Remarks
1	IA	A-phase current input	
2	IB	B-phase current input	Current input
3	IC	C-phase current input	
4	UN	N-phase voltage input	- Voltage input
5	UC	C-phase voltage input	
6	UB	B-phase voltage input	
7	UA	A-phase voltage input	
8	Power	POWER 5-9V DC	Power 5-9V DC
9	Micro SD	SD card	Take out(in) SD card

Accessories

Accessories	
Voltage wires	4pcs voltage clamp wires with banana plug (2 meters, 1.5mm 2)
Adaptor	85-265 AC to 9V DC adaptor
SD card	1GB
Remark	Rogowski coil and AA battery not included

Wiring

SHANGHAI PINYAN M&C TECHNOLOGY CO.,LTD

- *: Rogowski coil secondary output voltage can not over 333mV rms.
- ^: CT must be voltage output, secondary output can not over 333mV rms.

3PH3W

1PH2W L-N

Installation

Current input

Voltage input

Battery

Power and SD Card

Meter operation

Introduction

The power meter features a panel with TFT LCD, a graphic display, and contextual menu buttons for accessing the information required to operate the power meter and modify parameter settings.

The Navigation menu allows you to display, configure, and reset parameters

General display

The general display of the power meters is shown in the following picture:

Number	Description
А	Web site
	Micro SD Card Status
	Green color: SD Card status OK
D	Red color: SD Card is not detected
	Yellow color: SD Card storage off
С	Battary Capacity
D	Date and time
E	Values Parameters
F	Main menu
G	Sub menu

Key function

Change Data display

One press Down/Up keys to change Sub menu display Long press Down/Up keys to change Main menu display

Configuration mode

The default factory settings are listed in the following table:

Function	Factory settings
	3PH4W;
M/inim m	VT Direction connection;
winng	3 Rcoils on I1, I2, and I3
	50Hz
Patio	Rcoil FSA=1000A
Ratio	VT ratio=NA
SD Card	Switch=ENABLE
SD Calu	Period=60s
	H1=3
	H2=5
Harmonic	H3=7
	H4=9
	H5=11
Password(Low)	1000
Date/Time	-
	Switch=ON
BackLight	Period=60s
	Backlight=5
Domand	Method: sliding block;
	Interval: 15 minutes

Modifying parameters

There are two methods for modifying a parameter, depending on the type of parameter:

• selecting a value in a list (for example, selecting Rcoil from a list of availablepower systems)

• modifying a numerical value, digit by digit (for example, entering a value for the VT primary).

NOTE: Before you modify any parameters, ensure that you are familiar with the display functionality and navigation structure of your device in configuration mode.

Selecting the value in a list

To select a value in a list:

1. One press the \bigtriangledown or \circlearrowright button to scroll through the parameter values until you reach the desired value.

2. Press

to confirm the new parameter value.

Modifying the numerical value

The parameters listed below are the only ones for which you set a numerical value:

- Voltage Transformer (VT) Primary, Secondery
- Current Transformer (CT) Primary, Secondary
- SD Card period
- Password
- Date
- Time
- Backlight period

To modify a numerical value:

1. One press the \bigtriangledown or \bigcirc button to modify the selected digit.

2. Long press the \bigtriangledown or \circlearrowright to shift to the next digit. Modify the next digit

NOTE: If you enter an invalid setting and press OK, the cursor stays in the field for that parameter until you enter a valid value.

Configuration mode menu trees

SHANGHAI PINYAN M&C TECHNOLOGY CO., LTD.

Tel: +86 021 64850006

Fax: +86 021 64850006

E-mail: info@meatrol.cn

Website:www.meatrol.cn

Unit 55, No.2155, Lianhua south Road, Minhang District, Shanghai, China (201109)

© 2018 SHANGHAI PINYAN M&C. All Rights Reserved.